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TECHNICAL TRANSILATION F-32

SOME PROBLEMS IN FLANGING AND BEADING MEMBRANES*

By B. V. Grigoryev

The press chambers widely used for hydraulically flanging and beading

membranes are chambers with screw or gun-breech blecks: (Fig. 1). These cham
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Fig. 1. Hydraulic chamber.

bers consist of a body 2 with a block 1 and a die 3 attached to-it. In the
chamber 1s located plunger 6 with cup 8 attached to it, both of which rest on
spring 7. Membrane blank 4 is placed in the cavity of the plunger and is
pressed slightly against the annular projection of the die, a large part of
the stress of which goes into stamping out sealing ridge 5, which guarantees
that the chamber is hermetic. The 1liquid enters the chamber through a central
channel in the direction of the arrow and performs two kinds of work; as the
pressure increases it reinforces the stamping of the sealing ridge and, on the
other hand, it effects the beading and flanging of the membrane from the blank.

The hydraulic method of beading may be used equally well for membranes
of cold-worked materials and for materials which have undergone thermal treat-
ment, to give them high elastic properties. The method of flsnging and beading
menbranes which is under consideration gives considerably more stable proper-
ties and less residual deformations, elastic fatigue and hysteresis than mem-
branes prepared by means of resin, lead, or steel stamps and dies.

But despite the advantages that have been referred to, even in the hy-
draulic method of corrugating membranes there still occurs instability of the
properties, increased elastic fatigue and hysteresis, and sometimes even rup-
ture of the membranes. In order to elucidate the causes for the appearance of

*Pranslated from "Some Questions Pertaining to Modern Imstrumentation
Technology," edited by Poliakov, pp. 84-96.



these defects, the process in question must be analyzed.

It 18 not possible in the present article to make a full analysis of
the process up to the formation and distribution of the internal residual stres-
ses in membranes, the irregularity of distribution and the magnitude of which
are directly related to the residual deformation and the elastic fatigue. Ac-
cordingly, only those processes will be considered below that are connected
with the pressure necessary for crimping, and with the reinforcement of the
Ppressure of the blank agalnst the rim. These two questions are especially im-
portant with respect to obtaining membranes of high quality.

Fig. 2. Calculating crimping stress.

As we know, corrugation of the membranes is accompanied by a decrease
in the outer diameter of the blank (disk). Consequently the rim of the mem-
branes 1s subject to stresses in the process of corrugation. In order to
exhibit the stressed condition of the edge of the membrane, we choose a sec-
tor (Fig. 2) vith an angle 49, and consider the condition for the equilib-
rium of an infinitely small element a6sz , which is under the stress of hydrau-
1lic pressure, which is applied in order to produce the corrugation.

This element is subjected to tensile stress G ., to tangential compres-
sive stress &, and to compressive stress & 2 which &rises from the pressure
acting on the ;:Lm of the membrane.

At the initial motion of crimping, when there is the optimumm amount of
pressure on the disk, stress o, 1s insignificant and may be ignored. Then,
using the designations indicateg in Fig. 2, the ecuilibrium conditions for e-
lement a6sz , may be easily defined, if we take into account all the forces
acting on the element selected. A temsile force

- O'lf = -OlﬁRxd(p

acts on the element.
To the extent that the rim is under tensile stress, there appear campres-

sing forces of tangential stresses @ 3f, resolution of which mekes it possible
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to establish the components opposing the tensile stress, the sum of which 1s
equal to

do dd
205 sin —2— de(5 + 2>

Finally, there acts on the element a force opposing the retraction
(ex4de)l:, the magnitude of which is equal to

(01 + dcxl)(Rx + de>dq>(6 + dd)

Knowing the forces acting on the element, it 1s easy to set up the equation
for its equilibrium

_a ds )
- BRydP + 205 Sin -23 de(s + —2-> + (cl + dol)(Rx + de)dq)(B +dd) =0 (1)

Multiplying out and ignoring the terms of the third order of smallness,
we may write

d
01 + Rydedd + 205 sin ; dRyd + 07dRxded + dojRxded = O

In view of the smallness of angle dp we lake sing-g— = ig—or 29-3— = de
and, dividing each term by Rxd?é' , we have

dd X dRy
0] — + 0z —— + 0y —= + doy =0
175 ERX le 1
or

aRrR
doy + oy 5162 + ("1 + 03)§—)-{- =0 (2)
X

It 1s known from deformation theory that
o t o3 = 1.15p, (x)

vhere p_is the resistance to deformation in kg/mma.

e sign in equation (X) is chosen according to the following condition:
if the main stresses ¢, and &, are both tensile or compressive stresses, the
sign will be minus, but if one 3of‘ the main stresses is a tensile stress and
the other a compressive stress, the sign will be plus.

Substituting from Equation (X) in Eq. (2) we have

dR

dop + 0p L4 1.15p, =% =0 (3)

) R,
Integrating Eq. (3) over the interval from R, assuming a maximm value

as Rk to R, we have

R o R R 4Ry
J do; + —= dad = -1.15 Pe —
Ry 5 JURy R, Rx

f R
do, = ©
Ryc 1 lcp

describes the mean tensile strength in the interval from Rk to R, and

Here
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represents the stress referred to the initial thickness, miltiplied by the mean
thickness A § in the interval from Rk to R. But since stress O 1 relates to

a portion of the rim from Rk to R, it 1s in essence clcp’ and consequently the
equality of intervals may be presented in the form

or

R 4R

Jats! X

o 1+ —]=1.15 Pp —
lcP( 5) R . Rx

Tep = ——( l'lzb Pé(lgR - lg Rk> (xx)
1+ §)

vhere p ' 1s the mean value of the resistance to d=formation over the width of
the rane rim at the corresponding moment of tension.
Designating a s Tormila (XX) may be written in the form
. 1.15 Ry
Grep = - T2 pilg = (4)

Salving Eq. (X) and Eq. (4) similtaneously, we easily find the magnitude
of the compression stress as

R
= 1.15p/ -1
o3 5P, T (xXxx)

In Eqs. (4) and (X0XX) is the radius vector of the membrane, which
changes from to Rm’ that is on the diameter of the disk to the diameter of
the formed rane, and R 1s_ the effective radius of the membrane. If in the
equations above we designate _B as K, Eqs. (4) and (XXX) may be be written in

the form X 1.15
g = —=— p.lgkK
le 1+ A pC g (5)
l1g K
= 1.15p' -
Oz 5PC<1 Y ) (X0 )

To determine the stresses at any point of tte membrane's rim in Eqs. (L)
and (XXX), we must substitute for R the corresponding radius Rx’ and in Egs.

(5) and (XXXX), correspondingly R
ix- = &o
However, the tensile and cOmpression stresses determined according to

Formulas (5) and (X0OXX) do not take into account the supplementary stresses in
the material induced by the superficial friction between the rim of the membrane



and the instrument. But since in the process of crimping of the membranes there
is a superficial force of friction, which arises as a result of the contact of
the rim (Fig. 3), its magnitude may be designated in the form

T =1.5uQ
where JL - coefficlent of friction;

Q - force with which rim of the membrane is pressed;

1.5 - coefficient which does not contemplate complete contact on both sides
of the membrane rim with the tool, since as on one side contact of
the rim with the tool usually is only 50% of the surface of the rim,
which 1s explained by the pressing of the material almost at the
very beginning of crimping of the membrane.

Knowing the force of friction T, it is easy to define the stress due to
the forces of friction at the place where the rim goes over into the radius of
the outermost corrugation of the membrane

- T _1.5uQ (3000KK )
°T T xRS 2xRS
If we take as the specific pressure at which the surfaces are pressed
together

q = 2Q 5
.

we have
Q= qn(Rl?d - R2>

Substituting this wvalue in Eq. (XXXXX), we have

2 _ g2
l.5pq(RM - R ) uaf, o
Op = RE = 0.75 —B—(K - :L)R (6)

where
K= R
Hence, in beading and flanging membranes the general specific stress of
the tension of the rim, taking into account the effect of the frictional force,
will be

= 2 115 Haf. 2
% = Op * Or = T2 pLLEK + 0.75 ?(K - )R 1)

It will easily be sgen from Eq. (7) that for constant values of A; p ';
X; /.‘ and q, as the ratio 3 increases, the resistance to retraction 1ncreasgs;

it likewise increases as the dimensions of the me.Rbrane rim inecrease, which is
explained by the Increase in the coefficient K = Rl“_‘ and consequently, has a

negative effect on the corrugation process, preventing maximm extrusion of the
corrugations.

Finally, it should be noted that Formula (7), which describes the magni-
tude of the stress of the retraction of the rim in hydraulic corrugation of
menbranes, contemplates optimum specific pressure against the disk, which, as
will be visible, is not the case in the hydraulic method of corrugating mem-
branes, not by any means, in view of the fact that the force of the pressure
of the parts sgainst each other Q rises continuously, in direct proportion to
the hydraulic pressure in the chamber.



However, despite the instability of the magnitude of the specific force
pressing against the blank, it is advantageous to continue to calculate on the
assumption that q = const, and then introduce corresponding corrections into
the results obtained.

Upon further consideration of the process, 1% will be seen that in the
process of crimping membranes still another supplementary resistance to retrac-
tion arises, from the gradual curving of the material of the radius of the die
at the place where the rim goes over into the outermost corrugation of the mem-

brane.

\
\

Fig. 3. Diagram of action of surface friction.

In this region the material is subject to a complex deformation compris-
ing bending, dilatation and compression.

The size of the transitional radius from the rim to the outermost corru-
gation has an especially essential influence on the stresses in the material in
a bending region.

The smaller the radius of curvature, the grester the stresses that will
arise at the point of bending of the material, in perticular the tensile stres-
ses. The strains that take place and the stresses sppearing in the region of
curvature along the radius constitute an extremely complex process of corruga-
tion of the menbrane, and in practice this problem can only be solved more or
less approximately, assuming that in the region of the radius of curvature the
fivers of the material belonging to the die are elongated in proportion to the

coefficlent of extension F
Ky = F
k
(wherg F, is the surface of the membrane in mm? and F. 1s the area of the disk
in mm), gnd taking into account the circumstance that as the metal goes up around
the curvature of the radius, the contact friction will more and more interfere
with deformation of the fibers. In that way, the proportionality of the exten-



slon of the coefficient of elongation wlll as an average be expressed as 1+ KB .
2

In this case (Fig. 4) it may be assumed that an elementary portion of

Fig. 4. For defining forces of friction on transitional radius Ty

the curved length Al, when transferred to the radius of curvature of the die,
i1s elongated by
L (Tt T R\ N 1+KB)
2 ry + 0.55 1y + 0.58 2 ery + ® 2

Setting as equal to each other the work of the external and internal
forces accompanying the bending of the material of the blank (disk) along the
radius of curvature of the die, we may write

K
" 5 (L +Kg
Phending A ~ 2nRSp) Al T

from which the additional force for bending the material along the radius of
curvature will bdbe

21tR6pg /1 + KB\)
Phending = Bry + 5\ > /

there p * is the mean resistance of thg material to deformation along the tran-
iition Tadius of curvature r, in kg/mm".

Knowing the bending force, it 1s easy to determine the stress arising
'rom bending

_ Prending - Ropy, (1 + KB) 5
%bending 2n(R - 2ry sin a)8  2(2ry + 8)(R - 2ry sin a) (8)

(for the symbols entering into the formula, see Fig. 4).
On the basis of Eqs. (7) and (8) we define the total stress on the tran-

sition radius of curvature from the rim to the outermost corrugation of the

membrane ,
Op = 9B * %ending = %lcp ¥ % * %ending

This equation does not take into account the force of friction on the transi-
tion radius and the angle § of the slope of the outermost corrugation of the
menbrane in Fig. 4, which at the point of contact of radius rM will be equal

to angle X and determinate.
Taking into account the friction at the transition radius of curvature



r,, at angle X = @ » we may set up the following equation of definition:

M r
oy = L(Glcp + 0T>e“‘" + Gbending]s'ln a
where p - coefficient of friction;
- angle of slope of the outermost corrugation; in the exponents itis
given in radians;
eM®_ g factor which takes into account the frictional resistance at the
transitional radius of curvature.
Consequently, the formula for the contractile stress oy at the point
of contact of the rim with the outermost corrugation will have the following
form, as expanded

_ 1.15 . pg ) Q. Rﬁpg(l + KB) )
oy [1 T PeleK +0.75 (K2 l)%e ¥ 3oy * O)(E - ory sim @) S0 @

(9)

Knowing 0% and taking into account the fact that corrugating the pro-
file of the corrugations and the flat center of the membrane is accorganied by
a thinning of the material, it is easy to define the required specific pressure
necessary for hydraulic corrugation of the membran:s according to the familiar
formila for thin cylindrical membranes, according o which

B
Pnyd = o %= (10)

where r"' is the smallest radius of curvature of the peaks or depressions on
the corrugations; this radius is usually the radius of transition
from the rim to the outermost corrugation.

To simplify the calculations for defining the contractile stress G g
from Formula (9), the actual stresses of deformaticn p' and p may be equated
to the yield point O _ of the material.

The yield poing Gs 1s easily determined uncer these circumstances from

the familiar curves of the mechanical properties of the various materials, de-
pending on the degree of deformation¥
In this wey, we may take

vt p' =0
P. ® Pg s

Below 1s a test of the Formula (9) derived in an example of calculating
the specific hydraulic pressure for crimping a memtrane of phosphor bronze BrOPh
6.5-04, for total degree of deformation equal to 3(%, the ultimate strength of
the bronze being o, = 50 kg/mm2 =~ pé = pc.

If the parameters of the membrane are

= 30 mm ® = 0.5 m
FM_
R =25m — =Kg =1.3
Fy
Ry
—§—=K=1.2 IM=O-5mm

* A. P. Smiryagin, Industrial nonferrous metals and alloys, Metallur-
glzdat, 1949.
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=< = 0.1 a = 45°

T B =) 8 = 4s©

- o 5
H = 0.2 kg/mm 6M:-l—5mm

On the basis of Formla (5)

1.15 _, 1.15 2
s = =2 =———501g 1.2 =~ 5.8 '
lep = 1y Pel8XK =757 018 5.8 ke/

On the basis of Formula (6)

0.4k x 25 ~ 1.37 kg/mm?

o = 0.75 %(K2 - 1)R = 0.75 &g'w

>

On the basis of Formula (8)
R&p(1 + Kg)

"pending ~ 2(2ry + 8)(R - 2ry sin a)
) 25 X 0.3 X 50 X 2.3 _ >
2(2 x 0.5 + 0.3)(25 - 2 X 0.5 X 0.707) 137 ke/ms
On the basis of Formula (9)
oy = [(Ulcp + c,r)e“a' + Gbending] sin o
= [(5.8 + 1.37)1.12 + 15.7]0.707 = 15.36 kg/m:?

Knowing the quantity O3 , it is easy to determine, from Formla (10),

the pressure in the chamber that will be necessary for corrugation.
Phyd = ;5_ oy = % 15.%6 =~ 9.21 kg/mn? (or 921 atm)
M .

This account of the amount of pressure necessary for corrugation would
be completely justified under the condition of constancy of surface pressure
against the blank or, what comes to the same thing, with a specific force of
surface pressure q = const, the magnitude of which, in order t- mak- sure of
the qualitative process of extrusion of the membrane of rslled bronze 1s re-
commended to be kept within the limits q = 0.2-0.25 kg/mm”, and for steel
qQ = 0.25-0.4 kg/mm".

However, in the hydraulic chambers employed in practice, it is not pos-
sible to produce an operating pressure in the corrugating operation with a
completely definite limiting pressure at the rim of the membrane, since the
magnitude of this pressure, as the liquid is added to Chamber A of the press
(Fig. 5) with increasing pressure, continuously increases the contact pres-
sure of the blank in proportion to the pressure of the liquid.
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Fig. 5. For calculating surface pressure on blank.

The pressure against the blank in hydraulic chambers takes place in the
following way.

1. After the blank (disk) has been placed in the chamber and the cham-
ber has been closed with the block, the blank 1s not pressed down or at best
it 1s pressed down with the weight close to the portion of the force of the
spring, not greater than pqn, whereas the force of the lock acts basically to

press down the sealing gasket and this gives the coefficient

L %%
A
Hence, the maximm limiting pressure against the blank before beginning
the corrugation will be 4pQ,
o D% - D%)
Taking, in Fig. SDh=60mm, Dl=80mm, D, = 50 mm, D3=68mna.nd
qh = 10 kg, we have
2 2
’+Qn Dh - D2 .
_ D%'Dg_m’n(nﬁ'ne) 4 x 10(602 - 502)
9 = = > 5 = 5=~ 0.0003 kg /m?
(B-%8) w5
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2. As the liquid is admitted to the chamber under pressure, there is
further pressure on the gasket and the limiting pressure against the rim of
the blank rises, ajtaining the normal, that is the recommended limiting pres-
sure q = 0.2 kg/mm~ when the hydraulic pressure in the chamber is

e - Dg ~ 682

2
p=-—2—2q= —-—’—50—2 0.2 ~ 0.108 kg/mn® (or 10.8 atm)
0% - D5 80° - 50
in the chamber, calculated

3. As the hydraulic pressure of the liquid
inst the surface of

from Formula (10), increases, the limiting pressure aga
the blank increases, smounting to

N(Di - Dg)pl']yd
x5 - B)

This figure for the limiting pressure comes to, for the present example,

dp =

_ L(82 - 52) x 921 _ 143,676
sa(6.82 - 522 . M6

a0 = 100 atm (or 1 kg/mm?)

If we also take into account the decrease of the loaded diameter of the
menbrane upon corrugation, which occurs in the initial peﬁioé Bf the corrugation

and is expressed in the decrease of the width of the rim —3 > roughly 10%,
then the limiting value for the pressure on the face will rise to

9 gy = 1-06 ke/m®

It will be seen that a, is several times larger than the permissible

magnitude q = 0.2-0.25 kg/m:n2 for bronze and q = 0.25-0.4 kg/mm2 for steel.

This difference between the permissible and the actual limiting pressures
obtained at the end of the crimping process, complicates the formation of the
corrugations and causes pressure of the liquid in the chamber to be used that
1s considerably higher than that defined by Formula (10), by way of correction
in Formila (6), which enters into Formula (9) which determines the quantity oy.

Thus, for instance, from Formila (6) we have for the example taken

HOmax o 0.25 x 1.06
- 1)R = 0. — e
5 (K ) P 0.3

o = 0.75 X 0.b4 x 25 = 7.32 kg/mme

and from Formula (9)
Ormax ~ (Glcp M U‘r)e“CL + Gbending-_] sin a

(5.8 + 7.32)1.12 + 15.7]0.707 =~ 20 kg/mn?

Inserting this value in Formula (10) we have

s} .
Phyd = 7= O EJ[=9—5X2O=L2kg/mm2
M 0.5
or 1200 atm Instead of 921 atm, the figure obtained for the normal limiting

pressure against the face of the blank in hydraulic fluting of the membrane
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with the parameters gilven in the present exanmple.
In turn, increasing the pressure in the chamber by 1200-921 = 279 aim

increases the limiting pressure against the surface, which could be calculated,
but there is no need for it, since at the end of corrugation the thickness of
the membrane is no longer equal to 8 , but on the average to

F
oy = 5. 5 : M
K Fg
and in our example, with K = % R
0.
=22 ~ 0.23 mm
P 1.3
Inserting this value for SM in Formla (10), we have
Oy 0.2% o
= — g = —=< X 20 = ¢,20 kg/mm

or 920 atm, a little less than pﬂyd = g21 atm and consequently, there is

nn need actually to calculate the increased limiting pressure against the blank,

which would be necessary if Phyg > Phya-
Further, it mist be stressed that the rise in the pressure pﬂyd of the

liquid in the chamber by 1200-921 = 279 atm, is only necessary because of the
imperfections In the system of pressing on the blank, so that it cannot be in-
sured that g = const. 1In addition, the pressure on the blank in the chambers
that are in use cannot guarantee an equal pressure, but even 1f a joint of this
kind could be produced, even then one-sided pressure against the blank would be
possible because of variations in the thickness of ths membrane blanks.

Hence, it is inevitable that cases of one-sided pressure against the
blanks should occur, and therefore the formation of elliptical membranes with
residual internal stresses that are asymmetrically situated with respect to
the axis of flecture and varying in magnitude. This phenomenon leads to a con-
siderable dispersion of the characterlstic curve, a high residual deformation,
and high elastic fatigue. In order to eliminate this defect in the hydraulic
chambers in use, Engineer G. N. Frolov (NIAT) composed a new system of pressing
against the blanks in hydraulic chambers (Fig. 6). The distinguishing feature
of this design 1s the separation of the pressure of the blank against the die
and the pressure on a annular contact, without gasket, along the recess in
die 3 and the projection of plunger 6, designed to insure a hermetic seal in
the chamber.

In this design, the initial force of contact of the annular depression
between the die and the plunger is regulated by regulsting support 11, which
slides in base 13 and is set by pin 12, and the neces:tary initial clearance
between the pressure surfaces of the membrane with a cefinite force are set
by means of threaded support 5, on which crimpholder L is based, while the force
of pressure on the hollow and the projection of the arnular contact may be ex-
tremely high.

One advantage of this design is that crimpholder 4, which 1s up against
the spherical surface of support 5, insures an even pressure against the rim
of the blank. Furthermore, in this design it is impossible to set up excessive-
ly large forces for pressure against the blank, since in this case the annular
contact between the groove in the die and the projection in the plunger will
not be eble to insure a hermetic seal and there will be play between them,
through which space the liquid will force its way and the pressure in the chanber

will drop.
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Fig. 6. Diagram of hydraulic chamber with perfected surface pressure.
1 - body, 2 - lock, 3 - die, 4 - crimpholder, 5 - support, 6 - plunger,
7 - cup, 8 - blank, 9 - screw, 10 - packer, 11 - support, 12 - pin,
13 - base
However, despite the advantages of this method of preparing the blank
in hydraulic chambers, an apparatus for optimum contact pressure is a compli-
cated one, and hence further perfection of hydraulic chambers is of the first
necessity.
Translated by Translations,
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- New York 19, New York.
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